lunes, 8 de septiembre de 2008

El Acero - Proceso de fabricacion

El Acero - ¿Que es?


Los metales y las aleaciones empleados en la industria y en la construcción pueden dividirse en dos grupos principales: Materiales FERROSOS y

NO FERROSOS. Ferroso viene de la palabra Ferrum que los romanos empleaban para el fierro o hierro. Por lo tanto, los materiales ferrosos son aquellos que contienen hierro como su ingrediente principal; es decir, las numerosas calidades del hierro y el acero.
Los materiales No Ferrosos no contienen hierro. Estos incluyen el aluminio, magnesio, zinc, cobre, plomo y otros elementos metálicos. Las aleaciones el latón y el bronce, son una combinación de algunos de estos metales No Ferrosos y se les denomina Aleaciones No Ferrosas.
Uno de los materiales de fabricación y construcción más versátil, más adaptable y más ampliamente usado es el ACERO. A un precio relativamente bajo, el acero combina la resistencia y la posibilidad de ser trabajado, lo que se presta para fabricaciones mediante muchos métodos. Además, sus propiedades pueden ser manejadas de acuerdo a las necesidades especificas mediante tratamientos con calor, trabajo mecánico, o mediante aleaciones.



¿Qué es el Acero?



El Acero es básicamente una aleación o combinación de hierro y carbono (alrededor de 0,05% hasta menos de un 2%). Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados.
Ya que el acero es básicamente hierro altamente refinado (más de un 98%), su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en acero.
El hierro puro es uno de los elementos del acero, por lo tanto consiste solamente de un tipo de átomos. No se encuentra libre en la naturaleza ya que químicamente reacciona con facilidad con el oxígeno del aire para formar óxido de hierro - herrumbre. El óxido se encuentra en cantidades significativas en el mineral de hierro, el cual es una concentración de óxido de hierro con impurezas y materiales térreos.





Características mecánicas y tecnológicas del acero



Representación de la inestabilidad lateral bajo la acción de una fuerza ejercida sobre una viga de acero.
Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas:
• Su densidad media es de 7850 kg/m3.
• En función de la temperatura el acero se puede contraer, dilatar o fundir.
• El punto de fusión del acero depende del tipo de aleación. El de su componente principal, el hierro es de alrededor de 1510 ºC, sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1375 ºC (2500 ºF). Por otra parte el acero rápido funde a 1650ºC17
• Su punto de ebullición es de alrededor de 3000 ºC(5400ºF).18
• Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
• Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
• Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lamina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
• Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
• Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
• La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.
• Se puede soldar con facilidad.
• La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
• Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de19 3*106 S m-1. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.
• Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán debido a que en su composición hay un alto porcentaje de cromo y níquel.
• Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 • 10-5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta.El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.20 El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.

El Acero - Su historia




Historia del Acero


Histórico horno Bessemer
Aunque no se tienen datos precisos de la fecha en la que se descubrió la técnica de fundir mineral de hierro para producir un metal susceptible de ser utilizado, los primeros utensilios de este metal descubiertos por los arqueólogos en Egipto datan del año 3000 a. C. También se sabe que antes de esa época se empleaban adornos de hierro.
El acero era conocido en la antigüedad, y quizá pudo haber sido producido por el método de boomery —fundición de hierro y sus óxidos en una chimenea de piedra u otros materiales naturales resistentes al calor, y en el cual se sopla aire— para que su producto, una masa porosa de hierro (bloom) contuviese carbón.
Algunos de los primeros aceros provienen del Este de África, fechados cerca de 1400 a. C.
En el siglo IV adC. armas como la falcata fueron producidas en la península Ibérica.
La China antigua bajo la dinastía Han, entre el 202 a. C. y el 220 d. C., creó acero al derretir hierro forjado junto con hierro fundido, obteniendo así el mejor producto de carbón intermedio, el acero, en torno al siglo I a. C.
Junto con sus métodos originales de forjar acero, los chinos también adoptaron los métodos de producción para la creación de acero wootz, una idea importada de India a China hacia el siglo V.
El acero wootz fue producido en India y en Sri Lanka desde aproximadamente el año 300 a. C. Este temprano método utilizaba un horno de viento, soplado por los monzones.
También conocido como acero Damasco, el acero wootz es famoso por su durabilidad y capacidad de mantener un filo. Originalmente fue creado de un número diferente de materiales, incluyendo trazas de otros elementos en concentraciones menores a 1000 partes por millón o 0,1% de la composición de la roca. Era esencialmente una complicada aleación con hierro como su principal componente. Estudios recientes han sugerido que en su estructura se incluían nanotubos de carbono, lo que quizá explique algunas de sus cualidades legendarias; aunque teniendo en cuenta la tecnología disponible en ese momento fueron probablemente producidos más por casualidad que por diseño.
El acero crucible (Crucible steel) —basado en distintas técnicas de producir aleaciones de acero empleando calor lento y enfriando hierro puro y carbón— fue producido en Merv entre el siglo IX y el siglo X.
En China, bajo la dinastía Song del siglo XI, hay evidencia de la producción de acero empleando dos técnicas: una de un método "berganesco" que producía un acero de calidad inferior por no ser homogéneo, y un precursor del moderno método Bessemer el cual utilizaba una descarbonización a través de repetidos forjados bajo abruptos enfriamientos (cold blast).


Grabado que muestra el trabajo en una fragua en la Edad Media.
El hierro para uso industrial fue descubierto hacia el año 1500 a. C., en Medzamor, cerca de Ereván, capital de Armenia y del monte Ararat.La tecnología del hierro se mantuvo mucho tiempo en secreto, difundiéndose extensamente hacia el año 1200 a. C.
Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero auténtico.
Las características conferidas por la templabilidad no consta que fueran conocidas hasta la Edad Media, y hasta el año 1740 no se produjo lo que hoy día denominamos acero.
Los métodos antiguos para la fabricación del acero consistían en obtener hierro dulce en el horno, con carbón vegetal y tiro de aire. Una posterior expulsión de las escorias por martilleo y carburación del hierro dulce para cementarlo. Luego se perfeccionó la cementación fundiendo el acero cementado en crisoles de arcilla y en Sheffield (Inglaterra) se obtuvieron, a partir de 1740, aceros de crisol.
Fue Benjamin Huntsman el que desarrolló un procedimiento para fundir hierro forjado con carbono, obteniendo de esta forma el primer acero conocido.
En 1856, Sir Henry Bessemer, hizo posible la fabricación de acero en grandes cantidades, pero su procedimiento ha caído en desuso, porque solo podía utilizar hierro que contuviese fósforo y azufre en pequeñas proporciones.
En 1857, Sir William Siemens ideó otro procedimiento de fabricación industrial del acero, que es el que ha perdurado hasta la actualidad, el procedimiento Martin Siemens, por descarburación de la fundición de hierro dulce y óxido de hierro. Siemens había experimentado en 1878 con la electricidad para calentar los hornos de acero, pero fue el metalúrgico francés Paul Héroult —coinventor del método moderno para fundir aluminio— quien inició en 1902 la producción comercial del acero en hornos eléctricos.
El método de Héroult consiste en introducir en el horno chatarra de acero de composición conocida haciendo saltar un arco eléctrico entre la chatarra y unos grandes electrodos de carbono situados en el techo del horno.


Estructura de acero de la Torre Eiffel.
En 1948 se inventa el proceso del oxígeno básico L-D. Tras la segunda guerra mundial se iniciaron experimentos en varios países con oxígeno puro en lugar de aire para los procesos de refinado del acero. El éxito se logró en Austria en 1948, cuando una fábrica de acero situada cerca de la ciudad de Linz, Donawitz desarrolló el proceso del oxígeno básico o L-D.
En 1950 se inventa el proceso de colada continua que se usa cuando se requiere producir perfiles laminados de acero de sección constante y en grandes cantidades. El proceso consiste en colocar un molde con la forma que se requiere debajo de un crisol, el que con una válvula puede ir dosificando material fundido al molde. Por gravedad el material fundido pasa por el molde, el que está enfriado por un sistema de agua, al pasar el material fundido por el molde frío se convierte en pastoso y adquiere la forma del molde. Posteriormente el material es conformado con una serie de rodillos que al mismo tiempo lo arrastran hacia la parte exterior del sistema. Una vez conformado el material con la forma necesaria y con la longitud adecuada el material se corta y almacena.
En 2007 se utilizan algunos metales y metaloides en forma de ferroaleaciones, que, unidos al acero, le proporcionan excelentes cualidades de dureza y resistencia.
El uso intensivo que tiene y ha tenido el acero para la construcción de estructuras metálicas ha conocido grandes éxitos y rotundos fracasos que al menos han permitido el avance de la ciencia de materiales. Así, la Torre Eiffel, construida en París en 1889 es hoy día uno de los monumentos más visitados del mundo mientras el 7 de noviembre de 1940 el mundo asistió al colapso del puente Tacoma Narrows al entrar en resonancia con el viento. Ya durante los primeros años de la Revolución Industrial se produjeron roturas prematuras de ejes de ferrocarril que llevaron a William Rankine a postular la fatiga de materiales y durante la Segunda Guerra Mundial se produjeron algunos hundimientos imprevistos de los cargueros estadounidenses Liberty al fragilizarse el acero por el mero descenso de la temperatura, problema inicialmente achacado a las soldaduras.
En muchas regiones del mundo, el acero es de gran importancia para la dinámica de la población, industria y comercio.